Section 3.5

Definition of a Horizontal Asymptote: The line $y=L$ is a horizontal asymptote of the graph of f when

$$
\lim _{x \rightarrow-\infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow \infty} f(x)=L
$$

Limits at Infinity: If r is a positive rational number and c is any real number, then

$$
\lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0
$$

Furthermore, if x^{r} is defined when $x<0$, then

$$
\lim _{x \rightarrow-\infty} \frac{c}{x^{r}}=0 .
$$

1) Find the limit: $\lim _{x \rightarrow \infty}\left(6+\frac{3}{x^{4}}\right)$
2) Find the limit: $\lim _{x \rightarrow \infty} \frac{8 x+3}{2 x-7}$
3) Find each limit.
a) $\lim _{x \rightarrow \infty} \frac{x-3}{4 x^{2}+5}$
b) $\lim _{x \rightarrow \infty} \frac{x^{2}-3}{4 x^{2}+5}$
c) $\lim _{x \rightarrow \infty} \frac{x^{3}-3}{4 x^{2}+5}$
4) Find each limit.
a) $\lim _{x \rightarrow \infty} \frac{2 x-5}{\sqrt{3 x^{2}+2}}$
b) $\lim _{x \rightarrow-\infty} \frac{2 x-5}{\sqrt{3 x^{2}+2}}$
5) Find each limit.
a) $\lim _{x \rightarrow \infty} \cos x$
b) $\lim _{x \rightarrow \infty} \frac{\cos x}{x}$
6) Find the limit: $\lim _{t \rightarrow \infty} \frac{2 t^{2}+3 t-3}{t^{2}+4 t+6}$
7) Find the limit: $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x-10}{x-3}$

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: \#9, 13, 17, 29, 45

